Research on high efficient and flexible plants

002 606px

Boiler application		Status
MARCK0 700	Material qualification for the 700/720 °C power plant	Finished
DE-1	Fireside corrosion and steam side oxidation behavior of materials for 700°C power plant	Finished
DE-2	Characterization of superheater materials after cold deformation	Finished
FDBR02	Qualification of pipes with longitudinal welds made of Alloy 617	Ongoing
DE-4	Characterization of strength and deformation of pipes and forgings made of Ni- based alloys	Finished 06/2013
725HWT (1) Phase 2	Investigation of the long term service behavior of tubes for the future high- efficiency power plant	Finished Ongoing
HWT 2	Investigation of the long term service behavior pipes, bends and headers under static and cyclic loading	Ongoing
Turbine application		
DT-3	Qualification of dissimilar welds between 10%Cr-steels and Ni-based alloys	Finished
DT-4	Procedures and Fracture mechanics approaches for life assessment of components operating in high temperature regime	Finished
WK2	Advanced material concepts for forged and cast turbine components	Ongoing
Turbine and pipe work application		
TD-1	Optimization of non-destructive testing methods for thick walled components made of Ni-base alloys	Finished

MPA niversität Stuttgart What is needed?

Research on materials for components

MPA Iniversität Stuttgart Creep rupture of Alloy 263

- Creep resistance the most important property
- Alloy 263: excellent creep rupture behaviour
- Welded joints: similar behaviour as base material

EPERC General Assembly, Brussels, January 28, 2016

NPA Numerical analysis

- Development of material models to describe creep and creep-fatigue behaviour
- Modified Graham-Walles creep law:

- Norton and Garofalo type creep equations
- Constitutive equation based on Chaboche, Nouailhas, Ohno and Wang for creep-fatigue

Advanced Design by Analysis – Tools available

Damage after creep, Alloy 617 (OM)

Creep damage behaviour at 700 °C (cross section of the creep specimens)

- Creep damage due to the separation of grain boundaries (micro cracks) in the investigated stress and temperature range
- Only limited creep void formation
- Important for the inspections and remain life time assessment

T=700 °C, 164 MPa, tu=45.000 h, A_u=22 %, 168/296 HV10 EPERC General Assembly, Brussels, January 28, 2016

MPA iversität Stuttgart Microstructure of Alloy 617 (TEM)

Characterisation by thin metal foils & EDS & SADP

EPERC General Assembly, Brussels, January 28, 2016